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A Simple Protostellar Evolution Model
Consider a protostar forming with a constant accretion rate M


. The accreting gas is fully molecular, 

arrives at free-fall, and radiates away a luminosity Lacc = facc GMM

/R at the accretion shock, where 

M and R are the instantaneous protostellar mass and radius, and facc is a numerical constant of 
order unity. At the end of contraction the resulting star is fully ionized, all its deuterium has been 
burned to hydrogen, and it is in hydrostatic equilibrium.
The ionization potential of hydrogen is ψI = 13.6 eV per amu, the dissociation potential of molecu-
lar hydrogen is ψM = 2.2 eV per amu, and the energy released by deuterium burning is 
ψD ≈ 100 eV per amu of total gas (not per amu of deuterium).

a)

First consider a low-mass protostar whose internal structure is well-described by an n = 3 /2 
polytrope. Compute the total energy of the star, including thermal energy, gravitational energy, 
and the chemical energies associated with ionization, dissociation, and deuterium burning.

The star is a polytrope, and for a polytrope of index n the gravitational energy is

 = -
3

5 - n

G M2

R

According to the virial theorem  the thermal energy is half the absolute value of the potential 
energy, so

 =
3

2 (5 - n)

G M2

R

Finally, the change in internal energy associated with dissociation, ionization, and deuterium 
burning is (ψI +ψM -ψD)M. Note the opposite signs: ψL and ψM are positive, meaning that the final 
state (ionized, atomic) is higher energy than the initial one, while ψD is negative, indicating that the 
final state (all the deuterium converted to He) is a lower energy state than the initial one. Putting 
this all together, the total energy of the star is

ℰ = -
3

2 (5 - n)

G M2

R
+ (ψI + ψM - ψD) M



b)

Use your expression for the total energy to derive an evolution equation for the radius for a star. 
Assume the star is always on the Hayashi track, which for the purposes of this problem we will 
approximate as having a fixed effective temperature TH = 3500 K.

First we can compute the time rate of change of the star’s energy,

ℰ

= -

3

2 (5 - n)

G M

R
M
R


R
- 2 M


+ (ψI + ψM - ψD) M



Now consider conservation of energy. The star’s luminosity L represents the rate of change of the 
energy "at infinity", i.e., the energy removed from the system. Since the total energy of the star plus 
infinity must remain constant, we require that ℰ


+ L = 0. Writing down this condition and solving for 

ℰ


, we obtain

R

= 2 R

M


M
-
2 (5 - n)

3

R2

G M2
(ψI + ψM - ψD) M


+ L

It is convenient to divide  by M


 in order to recast this as an equation for the evolution of R with M:
dR

dM
= 2

R

M
-
2 (5 - n)

3

R2

G M2
(ψI + ψM - ψD) +

L

M


Dividing by R /M on both sides we get
d ln R

d ln M
= 2 -

2 (5 - n)

3

R

G M
(ψI + ψM - ψD) +

L

M


Next, we must compute the total luminosity, which contains contributions from the star’s intrinsic, 
internal luminosity, and from the accretion luminosity. Since the star is on the Hayashi track, we 
can compute the intrinsic luminosity by taking its effective temperature to be fixed at TH. Thus the 
total luminosity is

L = Lacc + LH = facc
G M M



R
+ 4 π R2 σ TH

4

which can be substituted in and we obtain:
d ln R

d ln M
= 2 -

2 (5 - n)

3
facc +

R

G M
(ψI + ψM - ψD +

4 π R2 σ TH
4

M
 

c)

Numerically integrate your equation and plot the radius as a function of mass for M

= 10-5

M⊙ yr-1 
and facc = 3 /4. As an initial condition, use R = 2.5 R⊙ and M = 0.01M⊙, and stop the integration at 
a mass of M = 1.0M⊙. 

Plot the radius and luminosity as a function of mass; in the luminosity, include both the the accre-
tion luminosity and the internal luminosity produced by the star.
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In[173]:= facc = 3  4;

Msun = 2 × 1033;

Rsun = 6.96 × 1010;

Lsun = 3.83 × 1033;

eV = 1.6 × 10-12;

amu = 1.66 × 10-24;

year = 365.25 * 24 * 3600;

mdot = 10-5
Msun

year
;

TH = 3500;

ψI = 13.6 eV / amu;

ψM = 2.2 eV / amu;

ψD = 100 eV / amu;

σ = 5.67 × 10-5; G = 6.67 × 10-8;

dlnRdlnM[lnR_?NumberQ, lnM_?NumberQ, n_ : 1.5, facc_ : 0.75, Mdot_ : mdot] :=

Module{R = Exp[lnR], M = Exp[lnM]},

2 -
2 (5. - n)

3.
* facc +

R

G M
* ψI + ψM - ψD +

4. π R2 σ TH4

Mdot


lum[R_, M_, n_ : 1.5, facc_ : 0.75, Mdot_ : mdot] := facc * G
M Mdot

R
+ 4 π R2 σ TH4

Solving the DGL numerically gives d lnR /d lnM

In[188]:= sol = NDSolveValue[{

lnR'[lnM] == dlnRdlnM[lnR[lnM], lnM],

lnR[Log[0.01 Msun]] == Log[2.5 Rsun]}, lnR, {lnM, Log[0.01 Msun], Log[1. Msun]}]

Out[188]= InterpolatingFunction
Domain: {{72.1, 76.7}}
Output: scalar 
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Note that the radius is too large by a factor of ~3 compared to more sophisticated models, mainly 
due to the incorrect assumption that all the accreted deuterium burns as quickly as it accretes. In 
reality the D luminosity should be significantly lower, because D burning lasts longer than accretion.

d)

Now consider two modifications we can make to allow the model to work for massive protostars. 
First, since massive stars are radiative, the polytropic index will be roughly n = 3 rather than 
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n = 3 /2. Second, the surface temperature will in general be larger than the Hayashi limit, so take 
the luminosity to be L = max[LH, L⊙(M /M⊙)3], where LH = 4π R2 σ TH

4 and R is the stellar radius. 
Modify your evolution equation for the radius to include these effects, and numerically integrate 
the modified equations up to M = 50M⊙ for  M


= 10-4

M⊙ yr-1 and facc = 3 /4, using the same initial 
conditions as for the low mass case. Plot R and L versus M.

This problem can be solved using the same basic structure as the previous part. The derivative of 
radius with respect to mass now becomes

d ln R

d ln M
= 2 -

2 (5 - n)

3
facc +

R

G M
(ψI + ψM - ψD +

max4 π R2 σ TH
4, L⊙ (M / M

⊙
)3

M
 

In[189]:= mdot2 = 10-4
Msun

year
;

dlnRdlnM2[lnR_?NumberQ, lnM_?NumberQ, n_ : 3, facc_ : 0.75, Mdot_ : mdot2] :=

Module{R = Exp[lnR], M = Exp[lnM]},

2 -
2 (5. - n)

3.
* facc +

R

G M
* ψI + ψM - ψD +

lumstar[R, M]

Mdot


lumstar[R_, M_] := Max4 π R2 σ TH4, Lsun
M

Msun

3



In[192]:= sol2 = NDSolveValue[{

lnR'[lnM] == dlnRdlnM2[lnR[lnM], lnM], lnR[Log[0.01 Msun]] == Log[2.5 Rsun]},

lnR, {lnM, Log[0.01 Msun], Log[50. Msun]}]

Out[192]= InterpolatingFunction
Domain: {{72.1, 80.6}}
Output: scalar 
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e)

Compare your result to the fitting formula for the ZAMS radius of solar-metallicity stars as a func-
tion of M in Tout et al. (1996). Find the mass at which the massive star would join the main 
sequence. Your plots for R and L are only valid up to this mass, because this simple model does not 
include hydrogen burning.

In[157]:= L[M_] := 0.39704170 M5.5 + 8.52762600 M11 

0.00025546 + M3 + 5.43288900 M5 + 5.56357900 M7 + 0.78866060 M8 + 0.00586685 M9.5

R[M_] := 1  0.01077422 + 3.08 M2 + 17.84778000 M8.5 + M18.5 + 0.00022582 M19.5

1.71535900 M2.5 + 6.59778800 M6.5 + 10.08855000 M11 + 1.01249500 M19 + 0.07490166 M19.5
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